Roll No.

MCSE/MSE-101

M.E./M.Tech., I Semester

Examination, June 2023

Advanced Computational Mathematics

Time: Three Hours

/ Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. a) Define linearly dependent and independent sets. Check whether the vectors are $a_1 = (1,2,3)$, $a_2 = (1,0,1)$ and $a_3 = (0,1,0)$ are linearly independent or linearly dependent
 - b) Define each of the following.
 - i) Hash function
 - ii) Heaviside's unit function and error function
 - iii) Modular arithmetic
- 2. a) Prove that $H_n(-x) = (-1)^n H_{n(x)}$
 - b) Define $T: V_3 \to V_2$ by the rule

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_2)$$

Show that this is a linear transformation.

a) Find the Fourier transform of e^{-|x|}

b) Solve the Laplace equation $u_{xx} + u_{yy} = 0$, for the mesh with boundary values shown in the following figure.

- 4. a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}$ subject to initial condition $u = \sin \pi$ at t = 0 for $0 \le x \le 1$ and u = 0 at x = 0 and x = 1 for t > 0, by Gauss-Seidel iterative method.
 - b) Write the properties of DFT, WFT and Haar transform.
- a) Out of 800 families with four children each, how many families would be expected to have
 - i) 2 boys and 2 girls
 - ii) at least one boy
 - iii) No girl
 - iv) at most two girls

Assume equal probabilities for boys and girls

Find the mean and variance of Poisson's distribution.

MCSE/MSE-101

Contd...

PTO

MCSE/MSE-101

 a) Obtain the steady state difference equation for the queuing model {M/M/1: (N/FCFS)} and show that

$$P_n = \frac{(1-\rho)}{1-\rho^{N+1}} \rho^n; 0 \le n \le N$$

- b) Show that normal distribution as the limiting case of Binomial distribution when p = q.
- 7. a) Explain the Markov Chain. Wraw transition diagram and write down the properties of Markov Chain.
 - b) Customers at a box office window, being managed by a single man, arrive according to a Poisson input process with a mean rate of 30 per hour. The time required to serve a customer has an exponential distribution with a mean of 2 minutes. Find the average waiting time of customers.
- 8. a) Let A and B be fuzzy sets defined on a universal set X. Then prove that: $|A| + |B| = |A \cup B| + |A \cap B|$
 - b) Write the MATLAB statements required to calculate y(t) from the equation

$$y(t) = \begin{cases} -3t^2 + 5, & t \ge 0 \\ 5t + 2, & t < 0 \end{cases}$$

for values of t between -9 and 9 in step of 0.5.